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Abstract. By mapping a continuum model of a halogen-bridged metal complex chain to the 
Takayama-Lin-Liu-Maki continuum model of polyacetylene and using a supersymmetric 
functional integral formalism, we study the influence of both ‘site’ and ‘bond’ disorder on 
the nature of the ground state of this halogen-bridged metal complex PtI. We find exact 
results for the amplitude of the order parameter A and the electronic density of states as a 
function of the strength of the disorder. We also obtain a phase diagram of A versus both 
bond and site disorder. The critical concentration of site impurities versus average impurity 
scattering strength gives a fractal dimension which is very close to that of the two-dimensional 
Sierpinski gasket. 

1. Introduction 

Recently, the interest in a class of quasi-one-dimensional chains composed of transition 
metal ions M and (bridging) halogens X has strongly increased. There have appeared in 
the literature quite a number of reports, both theoretical and experimental [l-51, 
emphasising various interesting properties of this class of materials. For different choices 
of the transition metal (M can be Pt, Pd or Ni) and the halogen (X can be C1, Br or I), 
the composed halogen-bridged metal complex systems exhibit quite different properties. 
For instance, the complex PtCl appears to have strong electron-phonon coupling, while 
the complex PtI appears to have just the opposite, namely it has weak electron-phonon 
coupling [ 11. In general, the Hamiltonian describing the halogen-bridged complex chain 
systems can be mapped to the Su-Schrieffer-Heeger (SSH) [6] Hamiltonian with a 
complex order parameter [7]. Furthermore, if an appropriate set of M and X has been 
chosen, say, for the case of PtI complex, by making a simple gauge transformation [2], 
its model Hamiltonian has exactly the same continuum limit as that of the Takayama- 
Lin-Liu-Maki (TLM) [8] model in polyacetylene. Baeriswyl and Bishop (BB) have dis- 
cussed most properties of this class of materials and even the possible relationship with 
the recently discovered high-T, superconductor; we refer readers to their papers [l] for 
detailed discussions of these topics. 

However, it is quite natural to ask questions about how disorder (both bond and site 
disorder) affects this system and whether the ‘gap’ opened owing to ‘Peierl’s theorem’ 
will be closed or enhanced with the presence of various types of disorder. Intrinsically, 
disorder exists in the system: the bond disorder may come from, say, the bond defects of 
the chains and the site disorder may arise from randomly distributed charged impurities. 
Unfortunately, not even approximate theories dealing with random disorder in this class 
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of materials have been reported so far to the present author’s knowledge. To answer the 
above questions is definitely not a easy task; however, owing to the one-dimensionality 
of the system and similarities of the Hamiltonians between this system and the well 
known SSH and TLM models in polyacetylene, we can apply the methods which work well 
in the SSH and TLM models to this system as the first step. 

By using a supersymmetric functional integral formalism, Xu and Trullinger (XT) [9] 
were able to solve a disordered model of polyacetylene in continuum limit, i.e. the 
disordered TLM model, exactly. We herewith apply their method to investigate a dis- 
ordered continuum model of the halogen-bridged metal complex PtI chain system. We 
find exact results for the dependence of the gap parameter A and electronic density 
of states on the strength (concentration) of both ‘bond’ and ‘site’ random disorder 
(impurities). We find that the Peierl gap will be suppressed for a sufficient amount of 
either bond or site (attractive impurities) disorder, or both types of disorder. However, 
in this paper, we restrict ourselves to the ground-state configuration only, i.e. A(x) = A 
is a constant without considering lattice relaxation effects and excitations such as the 
kink and polaron discussed in [ l ]  as well as the Coulomb interaction. The paper is 
organised as follows: we introduce the supersymmetric functional integral formalism in 
§ 2, present our results in § 3 and give conclusions in § 4. 

2. Supersymmetric functional integral formalism 

Treating random-disorder problems, the supersymmetry method (see, e.g., [9-151 and 
references therein) proves to be very useful. In general, by taking advantage of both 
Grassmann and conventional integrals (supersymmetry integrals), one is able to average 
over the disorder potential at an early stage in calculations and to arrive at an effective 
quantum field theory with a supersymmetric Lagrangian. This method was explicitly 
used in [9, 12-15] to treat some disordered systems in detail. 

In this section, we specify both bond (off-diagonal) and site (diagonal) random 
disorder in the continuum model of the BB [1] Hamiltonian. We use the supersymmetric 
functional integral formalism to average over random disorder at the very beginning of 
computing the averaged Green function and thus convert the original Lagrangian to an 
effective supersymmetric Lagrangian involving superfields which is similar to the usual 
quantum field Q4 Lagrangian; therefore the transfer operator method can be applied to 
obtain exact results. 

Our starting point is the continuum model of the BB Hamiltonian in [l] (equation 
(2.1)) with A ,  = 0, A2 Q 1, i.e. the weak-coupling limit (&are electron-phonon coupling 
constants), which represents the PtI complex and is equivalent to the TLM [8] model after 
an appropriate gauge transformation [ 2 ] .  The Hamiltonian is 

where oQ is the maximum phonon frequency in the discrete lattice model of BB, g is a 
scaled electron-phonon coupling constant and A is proportional to the amplitude of the 
displacement of X atoms, which will be regarded as a static classical field in the rest of 
this paper since only ground-state properties are of interest to us. 

The electronic part He, of the Hamiltonian after introduction of the random-disorder 
potentials U,(x) (bond disorder) and U,(x) (site disorder) is given by 

d 
He, = dxYt (x )  -io3 - + (1 + o,)U,(x) + [A + Ub(x)]ol) Y(x) I ax 
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where we set uF = kF = 1 when passing to the continuum limit, {q} are Pauli matrices, 
and Y(x) is a two-component pseudo-spinor field composed of right- and left-moving 
electron fields U(X) and u ( x ) .  It is exactly the same as that of the disordered TLM model 
studied by XT. 

We also note that, when the present case is compared with the XTmodel[9], the bond 
disorder in the former case corresponds to the site disorder in the latter case and the site 
disorder in the former case to the bond disorder in the latter case, because of the gauge 
transformation [2]. The bond disorder that we introduced may originate from randomly 
distributed lattice defects. It is assumed to be Gaussian randomly distributed with 
zero average and totally uncorrelated in the spatial variable x, i.e. (&(x)Ub(x’ ) )  = 
Ybi?(X - x’), where the angular brackets denote the average over random realisations 

of the disorder and the constant Yb represents the strength of the bond disorder. For site 
disorder, we cannot simply assume Us(x) to have zero average, since Us@) usually arises 
from an external potential (e.g. the Coulomb potential of randomly distributed charged 
impurities); instead, one can assume it to be non-zero mean Gaussian distributed. Here 
we choose (U,(x)) = Uo,  and also we set Us(x) = U. + os@), where ( ~ s ( x ) o s ( x ’ ) )  = 
y,i?(x - x’). The average value U. can be either negative or positive denoting attractive 

or repulsive impurities, respectively. Generally ys and U. are treated as independent 
parameters, but for the purpose of plotting representative results we consider the 
specific simple case of attractive &function impurities with average strength K~ and 
concentration c [16]. Then U,, and ys can be simply related via U. = - c K ~ ,  ys = C K ~ .  To 
simplify the problem further, we assume the site impurities to be ‘isoelectronic’, which 
means that the system accommodates the same number of electronic charges before and 
after introducing random impurities. 

The component functions ~(x), u(x)  of Y satisfy coupled Bogoliubov-de Gennes 
(BDG) equations [8] obtained by varying equation (2.2). These equations can be de- 
coupled by linear transformations ( fi = U * iu) to yield 

[j-d2/dX2 f [A i- ub(X>l2 - {2[A + Ub(x)]dU,/dx}/(E - 2us) 

- WJ/W ( d / a x ) / ( ~  - 2us)nf+ 
= ( E 2  - 2USE)f+{-(d2/d~’) f [A + Ub(X)]’ + dub/dX}f- 

= ( E 2  - 2UsE)f- (2.3) 
where we note that, for a certain set of {x}, a random potential U,(x) may take its value 
equal to E;  as it happens, one cannot simply divide the factor E - 2Us(x) from both sides 
of the above equation. Fortunately, for E = 2Us(x), we have a trivial case giving zero 
density of states (see Appendix). 

The above equations define aset of effective Schrodinger equations, Hf2 = ~f~ which 
we shall use later instead of equation (2.2). Equation (2.2) is a Dirac-type equation; thus 
it is difficult for us to use the transfer operator technique to perform the supersymmetric 
functional integrals. Of course, both sets of equations are equivalent and the resulting 
density of electronic states is related simply by (p(E))  = ( d ~ / d E )  ( P ( E ) ) .  We define E to 
be 

E =  E 2  - A 2  + 2CKoE. (2.4) 
With our choice of units where uF = kF = 1, the concentration c = Ni,,/L of impurities 
is related to the fractionf = NimP/N of substituted sites by c = (2/n)f. 

Although the spectrum of the electronic Hamiltonian can be found in the absence of 
disorder [l] ,  in the presence of Ui(x) the spectrum cannot be found. Fortunately, one is 
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usually interested only in quantities which are averaged over the disorder. For example, 
the calculation of thermodynamic quantities requires only knowledge of the averaged 
density of states which is well known, given by the following expression: 

ME))  = - (1/4 (Im[GR(x, x; 811) (2.5) 
where GR denotes the retarded Green function which can be formally written in terms 
of the (unknown) eigenfunctions {qk} and eigenvalues {Ek} of the full Hamiltonian as 

By noting the properties of Grassmann and conventional integrations, after employ- 
ing the supersymmetric functional integral method, we can represent GR(k; E) as a 
functional integral over supervectors 

@ =  (3 
(@’ = (x*, S*) = (@*)’, where T i s  the transpose): 

where the subscript M takes one of two values which indicate the fermionic (x) or bosonic 
(S) components of @ (each of the components x and S is itself a two-component vector 
containing ‘right- and left-moving’ fields so that the @ superfield is a four-component 
object). 

On introduction of the field variables @, @+ according to the formulae 

the Green function GR(x, x’; E) can be written as 

GR(x, x’; E) = -i @.,(x)@L(x’) exp (- I L dy) D@* D@ I (2.9) 

(2.10) L = i a t (E  - H - id)@. 

Writing out the Green function for our model, and remembering that equations (2.3) 
and (2.4) define H a n d  E, we have 

GR(x, x’; E) = -i @.,(x)@.’,(x‘) exp (- L dy) D@* D@ I (2.11) 

L = , u @ ~ ( E  - H - id)@ (2.12) 

where p will be set equal to i later in an analytic continuation process for solving the 
effective Schrodinger equation (2.17) to obtain the density of electronic states. p is 
treated as a real parameter just for convenience to solve equation (2.17) in a real domain 
instead of a complex domain. 

Now the average over random potentials can be done easily (we give the details in 
the Appendix to yield 
2 = p@’t[(d2/dx2) + E - id]@ + (2A2yb + 2E2 ys + y;/2)(@’@)*. (2.13) 

Equation (2.13) is a typical Lagrangian of the supersymmetric 0 model in field theory. 
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We note that the inclusion of auxiliary boson fields demands no essential changes, which 
was proved explicitly in [ l l ]  in 1979. Following the method in [17] for x1 < x2, our 
averaged Green function becomes 

(G(xl ,xZ;  E ) )  = -i dRo dR1 dRz  T(O,xl; Ro,  R l )  

(2.14) 
i 

x x1qx1, x2; R l ,  R2)X2*r(x2, L ;  R2, Ro) 

where we define 

R = h, x*, S ,  S*}  dR dX* d x  dS* dS/n.  (2.15) 

The kernel r appearing in equation (2.14) satisfies the Schrodinger equation 

[-a/ax + X(R)]T(x, x’; R, R’) = 6(x - x’)6(R - R’) (2.16) 

with 

X = -(l/p)[a’//(aS* as) + a2/(8x* ax)] + p(A’ - E’ - 2ECKo)@’@ 

+ (2A2y, + yE/2 + 2E2y,)(@t@)Z (2.17) 

where we note that @+@ = S*S + x*x. The averaged density of electronic states is 
obtained from the imaginary part of the Green function according to equation (2.5). 

3. Results and discussion 

Our task is to find first the imaginary part of the averaged Green function (i.e. equation 
(2.14)) which is the density of electronic states. In the thermodynamic limit L- ,  03, 

performing the supersymmetric functional integrals in equation (2.14) is equivalent to 
finding the lowest energy of the effective Schrodinger equation (2.17), which gives the 
only contribution to the Green function. 

To do this, we can expand the kernel r over orthogonal eigenfunctions V n  of the 
Schrodinger equation 

as 

T(x,x’; R, R’) = O(x’ - X) 2 Vn(R)Vi (R’) exp[-vn(x’ - x)]. (3.2) 

Recall that any Grassmann function can be expanded as a finite polynomial of 

n 

Grassmann variables x, x* and x2 = (x*)’ = 0; thus V n  can be expanded as 

Substituting this into equation (3. 1), we obtain 
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Following similar procedures to those in [13] and introducing polar variables as S = 
r exp(ilO), we have = exp(il0) qnl(r).  We choose the ground-state eigenfunction as 
qo = qo( + x*x + S*S), which is assumed to depend only on the ‘length’ in the super- 
space. We obtain 

-(l/~)Ed’/dr’ + (1/r)(d/dr)I~! + V(r)qOO = vnq8. (3.5) 
We note that the above equation has the lowest eigenvalue v o  = 0 and the corresponding 
eigenfunctions [18] are the Airy functions? 

q; ( r )  = Ai{!jr’(2~’)~/~(2p)~/~ + p(2p)1/3[(y’)2/2]-1’3(A2 - E’ - ~EcK,)}. (3.6) 

(3.7) 

Inserting equation (3.2) in equation (2.14) yields 

(G(X - x ’ ;  E ) )  = -i 

where J,, = Jq; (R)xWm(R) d R. 
For x = x ’ ,  we obtain the density of electronic states by taking the imaginary part of 

equation (3.7). As L+ m, only the lowest state v o  = 0 contributes to the density of 
states; hence we obtain 

exp[-Lv, - ( x  - x ’ ) ( v ,  - v,>l 
m , n  

We note that all the formulae are obtained by using xx* representation, e.g. equation 
(2.14). It was proved in [12] that the same results could be obtained with the use of SS* 
representation. 

Integrating equation (3.8) by parts and using the facts that Ai”(z) - z Ai(z) = 0, 
[Ai’(z)]”’ - 4z[Ai2(z)]’ - 2 Ai2(z) = 0 [18], as well as the relation between P ( E )  and 
p ( E ) ,  we obtain the electronic density of states 

( p ( E ) )  = [41E + ~~~1/n’(y’/2)~~~]{[Ai’(z) Ai(z) + Bi’(z) Bi(z)]/[Ai’(z) + Bi’(z)]’} 
(3.9) 

with z = E/(Y’/~)’/~, where y’ = 4A2yb + 4E2y, + y i ,  and Ai and Bi are Airy functions 
of first and second type, respectively. This result is very similar to that obtained some 
time ago in [19] for the one-dimensional free-electron gas in the presence of disorder. 
This similarity comes from the facts that we use, instead of the Dirac-type equation (2.2), 
equation (2.3) which is a Schrodinger-type diagonalised equation; also, since the gap 
parameter A is a constant which can be absorbed as a part of the eigen-energy, we thus 
get a free-electron random system with modified energy eigenvalues. We note that, in 
the limiting cases Yb -+ 0, ys + O ( C K ~ +  O) ,  using the asymptotic properties of Airy and 
Biry functions, equation (3.9) reproduces the pure system electronic density of states 
exactly. For z > 0, Airy functions decay exponentially, giving band tails within the gap 
which can be seen in the density of states (see figures 3 and 4); it is a general feature of 
one-dimensional disordered systems. 

The density of states given by equation (3.9) depends on A (the order parameter) 
which remains to be determined. This is accomplished by minimising the total energy 
with respect to A with due regard to the fact that the energy cut-off [9] required for the 
electronic energy spectrum in the pure model now depends on A and the disorder 
strength Yb, ys because of the altered density of states and the requirement that the total 
number of electrons to be accommodated is the same as in the unperturbed model (recall 
i Note that we correct the errors in [12,13] in the solution of equation (3.5). 
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Figure 1. A against yb ( ys  = 0; A = 0.2). 

0.4 

A 
0.2 

0 
i 0.04  0.08 

C 

Figure 2. A against c (concentration) (yb = 0; i = 
0.2; Kg = 1.0). 

that in the site disorder case we assumed the disorder to be the isoelectronic impurities). 
It is straightforward to conduct a self-consistent numerical search for the values of A .  

In figure 1, we present the results for A as a function of the disorder strength Yb,  for 
a fixedvalue of A (we choose the same set of parameters as in [l], i.e. A = 0.525, energy 
cut-off E, = 3.2 eV and A = 0.2). In figure 2 ,  we plot A versus impurity concentration c 
for the site disorder. We find that, in a similar fashion, both have an abrupt drop to 
zero?. 

In figure 3, we plot the electronic density of states for the bond disorder case 
( y s  = 0). An exact zero exists in the density of states (see [20-221 for a more detailed 
discussion). We note that the bond disorder tends to raise the valence band states of the 
‘pure’ system in general (pushing up the energy cut-off), rounds off the square root 
divergence in the pure density of states and smears more states into the original ‘gap’. 
However, the electron-phonon interaction favours keeping the ‘gap’ open. In addition 
to this competition, we require that the total number of electronic states below E = 0 be 
the same before and after introducing the disorder. Above the critical value of Yb the 
competing processes can be balanced but this additional requirement can no longer be 
satisfied, which results in the total destruction of the order parameter, giving the abrupt 
drop to zero in figure 1. This discontinuity might be an artefact of the cut-off problem; 
one expects that in the discrete model (where there is no cut-off problem) we may not 
have this discontinuity. 

In figure 4 ,  we plot the electronic density of states for various impurity concentrations 
for the site disorder case (yb = 0) with K~ = 1 fixed. The ‘diagonal’ presence of the site 
disorder shifts the whole energy spectrum to the right or left depending on whether the 
mean value (U&)) of the disorder potential is positive or negative. For finite c (even 
small) the singularity has been rounded off. We can see the asymmetric finite peaks in the 
broken curve in figure 4(a).  In figure 4 ( b ) ,  we plot situations in which the concentration is 
near the critical value: the full curve is for the case c < c, and the broken curve for c > c,. 
We canseedramaticchangesin the density of states whichcorrespond to thediscontinuity 
in figure 2. Note that for c > c, a power-law divergence (p  = occurs as E = 0 is 
approached from above. Physically this is because of the collapse of the original ‘gap’. 
Recall that we have two peaks as c < c, but that the ‘gap’ suddenly disappears as c > c,. 
All the states populate at E = 0, giving the divergence; we also note that this divergence 
is still integrable. From the broken curve in figure 4(c ) ,  we can see that a peak occurs at 
E = 0, followed by a very rapid exponential drop just below E = 0 to a very small value 
t Note that we correct an error in figure 1 of [9] for bond disorder results. 
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Figure 3. Density of states for the bond disorder 
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0.02. (b)--,c = 0.064(<cC,criticalvalue);---, 

c = 0.5. 

= 1.0; a = 0.2). (a)  -, = 0; ---, c = 

c = 0.065(>~,). (c) -, C =  0.1; ---, 

for large concentrations. This is because of the competition between the E* and 2 w o E  
terms defined in equation ( 2 . 4 ) .  For very small negative E and large concentrations the 
latter will be dominant, yielding a positive argument of the Airy function; thus it decays 
like an exponential, As lEl increases the E* term will become dominant and the whole 
argument of Airy function becomes negative; we then obtain the usual power law 
behaviour, decreasing to the exact zero at E = (Us) .  This competition also results in the 
small peak in between the exact zero and the sharp drop just below E = 0. The existence 
of an exact zero can still be expected because of the even distribution of the random 
disorder; the pair splitting gives the exact zero at the mean value of the distribution of 
the random potential [23 ] .  

The shifting of the gap centre actually explains the discontinuity in figure 2 .  As ys + 0 
( C K ~  = Y ~ / K ~ +  0), the centre of the gap is exactly at E = 0 = E,. As ys increases, the 



Model of halogen-bridged metal complex PtI 3417 

O o 8  '---..i 
L 

'b 0.04 

t 

i I 
Figure 5. Phase diagram for A against both bond 
and site disorder strength (A = 0.2; K~ = 1.0). 

Figure 6 .  Critical site disorder concentration c, 
against impurity strength K~ for A = 0.2. 

energy E is effectively shifted by an amount C K ~ .  We know that increasing ys will decrease 
A; meanwhile, the electron-phonon interaction tends to open up the Peierl gap at the 
Fermi level, i.e. at E,  = 0. Owing to these competing effects the edge of the shifted 
shrunken 'gap' cannot pass the Fermi level, i.e. E = 0. Thus, at a certain value of ys ,  the 
'gap' has to be totally destroyed which results in the discontinuity in figure 2. 

In figure 5, we present the phase diagram of the bond plus site disorder case. Above 
the phase boundary, A vanishes while, within the phase boundary, the Peierl state is 
favoured. As either of the disorder strengths tend to zero, we reproduce the results for 
the single type of disorder cases. 

Figure 6 shows the critical impurity concentration of the site disorder against the 
impurity scattering amplitude K~ for il = 0.2; the best least-squares fitting shows that 
c, = K { ~ ,  where d = 1.58 ? 0.05. The appearance of the fractal dimension is because of 
the restriction ys = C K ~ ,  i.e. even c or K~ goes to zero; the product C K ~  has to be finite. 
We can understand this by considering ys as an area and K~ as the length of a segment a 
set of which will encircle the area. Each individual length K~ can go to zero but the total 
area must remain finite just like the area-length relation in usual fractals. One can go 
even further by obtaining an equation analogous to the formula of fractal dimensions, 
i.e. In c,/ln(l/Ko) -+ In N/ln(l/r) = d where c, is identified as N and K~ as r. Here d is 
very close to the fractal dimension of the two-dimensional Sierpinski gasket in which 
d = 1.5849 [24]. However, because of the discontinuity of A against c at c,, we cannot 
find an exact analytic expression for this fractal dimension d and also the physical 
emphasis is not clear yet. Whether it is related to the fractal dimension and the strange 
attractors found in one-dimensional disordered systems [25 ,26]  is still an open question. 

4. Concluding remarks 

By using a supersymmetric functional integral formalism, we have solved the problem 
of the disordered-continuum BB model of a metal complex chain completely and exactly 
for the ground-state configuration which reproduces the previous BB model results in 
the limiting cases. We find the electronic density of states and gap order parameter A as 
a function of disorder strength and impurity concentration. The gap parameter A 
undergoes an abrupt drop to zero, implying the destruction of the Peierl gap. The critical 
impurity concentration c, against impurity scattering strength K~ gives a fractal dimension 
that is very close to the two-dimensional Sierpinsky gasket. We also find the phase 
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diagram of bond disorder strength against site disorder concentration. 
So far we have treated only the attractive potential case and the method also works 

for the repulsive potential. The model has the virtue that it can be solved exactly and 
hence provides a starting point for more realistic models of disorder in this class of 
materials. However, for a more realistic model, one has to consider effects such as lattice 
relaxation and higher-order corrections from the discreteness; also this treatment works 
just for one type of this class of materials and one has to devise some new approaches to 
deal with the opposite cases ( A 2  -‘I 1) which is also interesting. 
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Appendix. Averaging over random disorder 

In this Appendix, we give the detailed steps of averaging over random-disorder 
potential. We need to perform the following average in equation (2.13): 

I = (exp (- 1 dx  @‘[i2AU(x)]@ (Al l  

Since U(x) is uncorrelated, we have in general [17] 

(U(Xl)U(XZ) * ‘ ‘ U(X2n+lN = 0 
and 

where we note that the summation extends over all possible partitions of the 2n indices 
(1, 2, . . . 2n) into II pairs ( i 2 ,  i 2 )  . . . (i2n-1, i 2 J ,  y is the correlation coefficient [17] 
and owing to the uncorrelated property of U we have 

(i2A)” 7 1 .  . .I dxl  . . . dx,  (U(xl).  . . U(xu)) I =  
u = o  (.). 

x @+(X1)@(X1). . . @+(X”)@(X”>. 

Using equation (A2), we have 
(i2A)2P P z=x- 

,u=o 

= exp ( -(2A2y) / dx [@t(x)@(x)]2) 

where the identity (2p)! = 2P(2p - l)!!p! has been used. Similarly 
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= exp ( - (2E2y,)  i dx [ Q t ( x ) @ ( x ) 1 2 )  (A6) 

where we use the shifted potential Us [ 1 7 ] .  
For integrals involving U 2 ,  we recall that physically, although the correlation 

strength y has been squared, its randomness and uncorrelated property have still been 
preserved. Thus we have 

(i)” 
u = o  (.). 

Z2 = (exp (- 1 dx OtiU2@)) = 2 7 i .  . .I dxl . . . dx, ( U 2 ( x 1 ) .  . . U 2 ( x u ) )  

x @ + ( X I ) @ ( X 1 ) .  . . @ t ( X V ) @ ( X U )  

All the integrals involving U ‘ ( x )  give no contributions when averaged, simply 
because ( U ’ ( x ) )  = 0, ( U ’ ( x ) U ’ ( x ’ ) )  = 0, . , . . The reason for this is that ( U ’ ( x ) )  = 
( a / a x ) ( U ( x ) )  = ( a / a x )  x constant = 0, since averaging over U is only with respect to 
U and not x .  Similarly ( U ’ ( x ) U ’ ( x ’ ) )  = 0. To prove this, we note that the correlation 
between U ( x )  and U(x’ )  depends only on the relative distance x - x’  and also has to 
be the absolute value of the distance Ix - x ’ l ;  in addition, the derivative of this 
correlation function has also to be an absolute value, i.e. its derivatives with respect 
to x or x’  have to be the same to incorporate this translation invariance. Bearing these 
in mind, we have 

( U ‘ ( x ) U ’ ( x ’ ) )  = ( a / a x )  ( a l a x ‘ )  ( U ( x )  U ( x ’ ) )  
= lim { ( d / a x )  l[S(x - x ’  - A x ’ )  - S(x - x ’ ) ] / A x ’ l }  

Ax’+ 0 

= lim 
A X ’ , A X - O  

{ [ l / ( A x ’  A x ) ]  [ / 6 ( x  + A x  - x’ - A x ’ )  - S(x + A x  - x ’ ) /  

- ~ S ( X  - X ’  - A X ’ )  - 6 ( x  - x ’ ) l ] }  

= lim { [ l / ( A x ‘  A x ) ] [ / S ( x  - x’)l - /6(x - x ‘ ) l ] }  = 0 (AS) 
A X ’ , A x + O  

where properties of S functions have been used as well as the assumption that A x  and 
Ax’ have the same rates when approaching zero. All the derivatives of higher-order 
moment are products of the derivatives of second or first moment and, hence, vanish. 

The term involving (U’ / (E  - 2U)) can be treated in the following way. We use 
(U’ / (E  - 2U)) = (a/ax)(-~ln(lE - 2U/ ) )  = (a/ax) X constant = 0, because the aver- 
age again is not a function of x.  We note that we exclude the point at U = E/2 in 
performing the average, i.e. our average is defined as $!k/”-’ dUF(U) + 
Jiz+a dUF(U) whereF(U) =p(U)(-hlnlE - 2UI) andp(U)is theprobabilitydistri- 
bution function of U. It is clearly not a function of x but 6 which is in any case a 
constant. All the higher-order moments can be obtained in a similar way as in equation 
(AS) and again vanish. Thus all the terms involving U’ give no contribution to the 
average. 

Next, we determine the density of states at E = 2Us. For the value E = 2Us, we 
need to go back to the original equation (2.3) which becomes simpler in this case. 
Since all the non-quadratic terms vanish, we have only quadratic terms left and thus 
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one can easily perform the functional integral to obtain the density of states. We need 
to carry out the following functional integral: 

D@* D@ @Qt exp [ - i z  Ot(xi) 
i 

where {xi}  are the set of points at which U, = E / 2  and (a ’ /ax2 )@(x i )  means that 
derivatives are at these points. Since the exponent is a quadratic functional, we can 
perform the integration explicitly to obtain 

We see that at  E = 2Us(x) the density of states is zero. 
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